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1. Introduction

Responding well in emergey situations is difficult for a variety
of reasons.
geographical region (such as occurs with floods, earthquakes,
storms, etc.), the sheer amount of information about the
emergency flowing through the network can ovehelm
decision makers, masking critical events, needs, and trends.
Further, all this information is inherently uncertain and dynamic,
leading to inconsistent views at different times and places that
trigger competing and often incompatible responses. aler
emergencies are rare (thankfullyhere is little in the way of
istandardo responses to fall
response must try to envision the many possible trajectories of
how the emergency will play out, and how alternative resesn
will affect those trajectories. Finally, the tempo at which
decisions must be made is daunting, since minor hesitations in
reaction can direly affect the loss of life and property.

Multiagent systems hold the promise to help improve the quality
and sged of decisions under such conditions. Conceptually, a

When the emergency transpires across a wide
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appropriate balance betwepreserving the autonomy of a user
to respond to emergent events while prongptitimely,
orchestratedctions thaiccomplish collective goals.

Thus, the position taken in this paper is that multiagent systems
distributed among participants in emergency management
operations can work in the backgroundo improve group
performance by automating the process of findipgropriate
models for pdicipants to have of each othefhis allows
participantsto focus their attention on the interactions most
critical to joint success. d'supportthis position, the remainder

of this paper summarizes a few examples of application domains
and prototyped tehnologies that feature the use of multiagent
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2. Coordination of Coalitions

Independent entities can form a coalition to collectively achieve
objectives that they cannot individually accomplisi
fundamental challenge in coalition operations, however, is in
smoothly integrating the activities of disparateitees. Each

. ~ o participant in a coalition will have ng .own perspectives,
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necessary, acting in place of a user who is unavailable or
focused on othedecision tasks. This is analogous to how a
(human) theatrical or sports agent is tasked with acting on behalf
of a performer/athlete during contract negotiations. Multiagent
systems are thus networks of such computational agents,
interacting with each ber to achieve outcomes that benefit their
associated users.

As computational entities, agents have capabilities that can
complement the abilities of human users. For example, agents
can store and rapidly retrieve vast amounts of information. They
can quckly project forward along different hypothetical future

trajectories and
They can perform mundane, routine duties for monitoring and
evaluating situations,
problems requing human insight and perspective. And,

working together, agents can jointly search through alternative
combinations of actions that their users might concurrently
pursue to find good (and in some cases optimal) joint responses.

While these advantagesiotorporating multiagent systems into
emergency management applications sound compelling,
realizing these possible benefits in practice, and especially being
able to count on them when lives are on the limd, require
advances along a number of frant®ne particular challenge,
which is the focus of this papés in developing computational
techniques for idtributed agents to use that will strikan

keepfdrackna

freeingecdhdeping ke ih a

counterproductive, and sometimes even dangerous joint
behavios. Coordination in a coalition is therefore critical, but
difficult because entities might not want to reveal too much
about their inner workings, might wish to maximize their
independence, and might lack the time and desire to understand
each other deeply

Multiagent techniquesanhelp improve coalition coordination.
DARPA®Gs Con t-Basetl Systdms pragem sponsored
the Coalition Agents Experiment (CoAX)] earlier this decade,

which developed an integrated system of agent technologies to
upport peagkeepin
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operations irg fictitious scenarip a
vé&rdioR B Whitr® issl{b\)(yﬁ]rf" Rigure 1. In this
scenario, several coabith partners are cooperating as. a
[5sny Gifb shbit Adng e
activities of the coalitionforces aremaintaining observation
posts, delivering humanitarian aidand enforcing a total
exclusion zone (TEZ)o keep enemy combatants apart. Since
different countries are responsible falifferent objectives,
potential inefficiencies can occur (such as when troop
movements and humanitarian aid delivenesving along the
same routayet in each othe@svay). More critically, failure to
coordinate can lead toatastrophidriendly-fire incidents (such
as vhen aircraft enforcing the TEZ fire on partner troops that are
moving to observation posts).
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Figure 1. Simple Coalition Coordination Problem

The challengehatthe coalition partnerface is finding the right
information about themselves to project to oth&ysensure
sufficient coordination without revealing sensitive information,
without flooding each other withirrelevantdetails and without
unnecessariljocking themselves intmflexible plansthat could
become obsolete as domain dynesnivolve.Unfortunately,
there is no single static description of local activities that works
well in all scenarios, or even between differgrdaups ofagents

in the same scenario. Instead, participants need to find the right
level of detailat which to coordinate their activities in the
current circumstances.

If we frame thisas a search problem, multiagent technology can
be brought to bearThe search is over the space of alternative
modeling levels aivhich agents can ardinate to find the level

that is best suited to their current needs. To créatepace of
modeling levels, we capitalize on \aluable sideeffect of
hierarchical planning mechanisms, such as Hierarchical Task
Networks(HTNs) [2]. HTNs generate agent plans by iteratively
decomposing highdevel tasks into increasingly primitive tasks,
until the expansion results in a sequence of primitive actions
that is expected to achietlee soughiftergoal.

The insight our approacdhses is that thentermediatdevels of

plan abstractiosummarize, at varying levels of detail, what the
agenés plan is. Thus, if agents can reason about how their
abstract actions might interact, they could detect possible
reasons to coordinatesing smallerabstractplars (rather than
sharing detailed plans). Further, if they resolve potential
interactions at the abstract plan level, then they can elaborate
(and revise) their local plans indepentlg and flexibly as their
local circumstances warrant.

The ability to identify possibleagent interactions and their
resolutions based on more abstract actions depends critically on
having sufficient models of what those actions might mean when
they areelaborated. Our work has defined a process by which
agents can compute summary information for intermediate
activities that ensures that possible interactions are never
overlooked B]. With these modelsan agentengags in a top
down coordination seeh. First,it compars its most abstract
plan with those of others, and immediately prunes away
unrelated agents (which, for many applications whagents
have gegraphic or functional locality, will be most others). For
each of the agents wittvhich it might interact, the agent can
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Figure 2. Multiple Alternative Coordination Levels

either resolve the interaction at the abstract level, or exchange
plans at the next deeper level of detail to further understand and
isolate the interaction. This process repeats separately for each
combination of agents until all interactions have been resolved.

Figure 2portrays a series of three levelsamfordinationalong

this search space. The top level involves abstract actions for
each of the entities, and resolves interactieery quickly {n

0.02 cpu secondd)y imposing ordering constraints that deto
largely sequete the actionsfor a makespan of 650. As we
progress down to more detailed levels, the agentss are (if
possible) broken into more primitive actions, allowing
interactions to be pinpoieti more accurately. The greater the
detail is, the shorter the makespdecomes because greater
amounts of concurrency can be safely achieved. However,
greater amounts of computation are needed for coordination as
the number of agent actions being reasoned aboutsgr

While thisillustration shows the tradeoff between the benefits of
better coordination (shorter makespans) and its reasonstg c
(rising cpu times), what does not explicitly show is thenpact

on local flexibility. As the agents work downwards into more
detailed plan decompositions and make promises about what
more specifically they will be doing and when, they lock
themselves into more striagt commitments that leave them
less wiggle room in case sometfi goes wrong. Some
flexibility is important.

This is a critical concern in emergency management, where
different participants might possess their own capabilities and
priorities, and will be reluct& to sacrifice some of their
autonomyto work with other groups whose responsibilities
might differ. Yet, stovepipedsegregatedespondergoordinate
poorly and slowly, if at all. The trouble is that there is no static
level for cardination that fits all situations, and renegotiating
relationships in the midst of an emergency distracts from critical
activities It is the position of this paper thaadapting
technologiedike those dexibed forcoalition operationgould
potentially prove valuable, allowing agenwperatingin the
background to weigh the benefits and risks of coordinating at
different levels ofdetail in orderto help organizations coerge
more efficientlyon levels that strike the right balance between
integration and autonomy



3. Coordination of Distributed Teams

The DARPA Coordinators program provides another exaniple
using multiagent systems to support coordination between
human entities In contrast with CoAX, the Coordinators
program assumed thdte user§goals were fully alignedl they
were on a team arttieir individual successdepended entirely
on the tean® successYet, because the people might be
dispersed and facing different local challenges gtliestill great
advantage in coorditiag at an abstractnoughlevel to give
individuals  latitude for improvisation in  changing
circumstances.

Because the humans being coordinated were part of a team, in
this application it was assumed that the multiagent system would
know from theoutset what the teamwork interactions were
rather than having to discover them as in CoAXThe
Coordinators applicationalso assumed a highly stochastic
environment. For examplene scenarioinvolved subteams
simultaneously entering sevetatationssuspecteaf holding a
hostage where those locations might be in very different areas
(urban,remote at se, etc.). As each subteam movedards its
assigned location, tould be delayedforcing other subteams to
adjust theimnovements Further, a subtead® capabilitiecould
degrade (loss of personnel or material) erabjectiveschange
(new ordersreceived. Meanwhile to avoid detection, radio
contactshouldbe minimized.

Not surprisingly, we again focus on the question of hbese
units should model each other, and in particular how the
computational agents embedded with the units should help
create,update,manageand utilize models of othésictivities.
Designating a single, central controller is infeasible not only
becase of the inherent risk (single point of failure) and
scalability (computational bottleneck) concerns, but also
because of the delays that it would impose on agents being able
to respond quickly to local events. Instead, agents should
exploit periods of ennectivity to form and update commitments
to each other regarding their interactions, and then individually
adapt their execution policies to their situations while
continuing to ensure that they adhere to their commitments.

In essence, an agéatommiiments represent an abstract model
of itself (whenit will accomplishtasksthat others are counting
on) and others (when they will meet its interaction needs). Our
research(Figure 3)has investigated techniques that agents can
use to tractably decide which comtments to make to each
other, and how to maximize local performance whskdl
satisfying commitments 4].  Further, when circumstances
conspire such that an agent fails to meet a commitment it has
made, alternative courses of commitnsemian be triggered,
essentially implying that agents have contingent policies not
only over their planned activities, but also over their
commitments to each other.

We have implemented these techniques in agents that model
their coordination problesnas a form of decentralized POMDP
[5]. Our resultsto date suggest thafpr teams of agentaho
individually have complex taskand with relatively sparse
relationships between different ageéntasks, searching in the
space of inteagent commitments rather than in the detailed
joint policy spacecan lead to considerableesmlups, and helps
agents retain greater flexibility oveneir own activities. That
teamwork in some emergency management sitogtias similar

charactestics suggests thatssociatingvith human responders
agents that perform commitmelpased coordinationould help
improvebothteamwork and responsiveness

4. Discussion

In this paper,we have arguedthat multiagent syems could
provide a valuabledecisionsupport infrastructure for managing
emergency responses, and have illustrated the use of multiagent
systems to help people coordinate their activities both in
coalition and in teamwork settings. This only scratcties
surface of ideas from the multiagent community that could find
use inemergency managementOther ideas include tasking
automated agents to monitor features of a situation on thésuser
behalf p], negotiating task aggnments among teamg][ and
using economic principles to optimize the allocation of joint
resources across ager [
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Figure 3: Iterative Commitment Formation Process
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